toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author Zapotoczna, M.; Forde, E.; Hogan, S.; Humphreys, H.; O'Gara, J.P.; Fitzgerald-Hughes, D.; Devocelle, M.; O'Neill, E. url  doi
  Title Eradication of Staphylococcus aureus Biofilm Infections Using Synthetic Antimicrobial Peptides Type Journal Article
  Year 2017 Publication The Journal of Infectious Diseases Abbreviated Journal J Infect Dis  
  Volume 215 Issue 6 Pages 975-983  
  Keywords Animals; Anti-Bacterial Agents/*pharmacology; Biofilms/*drug effects; Catheter-Related Infections/*drug therapy; Cytokines/blood; Disease Models, Animal; Humans; Methicillin-Resistant Staphylococcus aureus/*drug effects; Microbial Sensitivity Tests; Peptides/*pharmacology; Peptides, Cyclic/pharmacology; Rats; Rats, Sprague-Dawley; Staphylococcal Infections/*drug therapy; Vancomycin/administration & dosage; *Staphylococcus aureus; *antimicrobial peptides (AMPs); *biofilm; *catheter lock solution (CLS)  
  Abstract Here, we demonstrate that antimicrobial peptides (AMPs) are an effective antibiofilm treatment when applied as catheter lock solutions (CLSs) against S. aureus biofilm infections. The activity of synthetic AMPs (Bac8c, HB43, P18, Omiganan, WMR, Ranalexin, and Polyphemusin) was measured against early and mature biofilms produced by methicillin-resistant S. aureus and methicillin-susceptible S. aureus isolates from patients with device-related infections grown under in vivo-relevant biofilm conditions. The cytotoxic and hemolytic activities of the AMPs against human cells and their immunomodulatory potential in human blood were also characterized. The D-Bac8c2,5Leu variant emerged as the most effective AMP during in vitro studies and was also highly effective in eradicating S. aureus biofilm infection when used in a CLS rat central venous catheter infection model. These data support the potential use of D-Bac8c2,5Leu, alone or in combination with other AMPs, in the treatment of S. aureus intravenous catheter infections.  
  Address Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1899 ISBN Medium  
  Area Expedition Conference (up)  
  Notes PMID:28453851 Approved no  
  Call Number ref @ user @ Serial 100541  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: