|
Record |
Links |
|
Author  |
Hira, V.V.V.; Verbovsek, U.; Breznik, B.; Srdic, M.; Novinec, M.; Kakar, H.; Wormer, J.; der Swaan, B.V.; Lenarcic, B.; Juliano, L.; Mehta, S.; Van Noorden, C.J.F.; Lah, T.T. |

|
|
Title |
Cathepsin K cleavage of SDF-1alpha inhibits its chemotactic activity towards glioblastoma stem-like cells |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Biochimica et Biophysica Acta |
Abbreviated Journal |
Biochim Biophys Acta |
|
|
Volume |
1864 |
Issue |
3 |
Pages |
594-603 |
|
|
Keywords |
Amino Acid Sequence; Cathepsin K/genetics/*metabolism; Cell Line, Tumor; Chemokine CXCL12/chemistry/genetics/*metabolism; Chemotaxis; Gene Expression; Heterocyclic Compounds/pharmacology; Humans; Neoplastic Stem Cells/*metabolism/pathology; Neuroglia/*metabolism/pathology; Protein Binding; Protein Conformation, alpha-Helical; Protein Conformation, beta-Strand; Proteolysis; Receptors, CXCR/genetics/metabolism; Receptors, CXCR4/antagonists & inhibitors/genetics/*metabolism; Stem Cell Niche/genetics; *Cathepsin K; *Glioma stem-like cells; *Niche; *Stromal-derived factor-1alpha |
|
|
Abstract |
Glioblastoma (GBM) is the most aggressive primary brain tumor with poor patient survival that is at least partly caused by malignant and therapy-resistant glioma stem-like cells (GSLCs) that are protected in GSLC niches. Previously, we have shown that the chemo-attractant stromal-derived factor-1alpha (SDF-1alpha), its C-X-C receptor type 4 (CXCR4) and the cysteine protease cathepsin K (CatK) are localized in GSLC niches in glioblastoma. Here, we investigated whether SDF-1alpha is a niche factor that through its interactions with CXCR4 and/or its second receptor CXCR7 on GSLCs facilitates their homing to niches. Furthermore, we aimed to prove that SDF-1alpha cleavage by CatK inactivates SDF-1alpha and inhibits the invasion of GSLCs. We performed mass spectrometric analysis of cleavage products of SDF-1alpha after proteolysis by CatK. We demonstrated that CatK cleaves SDF-1alpha at 3 sites in the N-terminus, which is the region of SDF-1alpha that binds to its receptors. Confocal imaging of human GBM tissue sections confirmed co-localization of SDF-1alpha and CatK in GSLC niches. In accordance, 2D and 3D invasion experiments using CXCR4/CXCR7-expressing GSLCs and GBM cells showed that SDF-1alpha had chemotactic activity whereas CatK cleavage products of SDF-1alpha did not. Besides, CXCR4 inhibitor plerixafor inhibited invasion of CXCR4/CXCR7-expressing GSLCs. In conclusion, CatK can cleave and inactivate SDF-1alpha. This implies that CatK activity facilitates migration of GSLCs out of niches. We propose that activation of CatK may be a promising strategy to prevent homing of GSLCs in niches and thus render these cells sensitive to chemotherapy and radiation. |
|
|
Address |
Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Vecna pot 111, 1000 Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia; Department of Biochemistry, Faculty of Chemistry and Chemical Engineering, University of Ljubljana, Vecna pot 113, 1000 Ljubljana, Slovenia |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0006-3002 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:28040478 |
Approved |
no |
|
|
Call Number |
ref @ user @ |
Serial |
96615 |
|
Permanent link to this record |