toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Stankovic, N.D.; Hoppmann, N.; Teodorczyk, M.; Kim, E.L.; Bros, M.; Giese, A.; Zipp, F.; Schmidt, M.H.H. url  doi
openurl 
  Title No role of IFITM3 in brain tumor formation in vivo Type Journal Article
  Year 2016 Publication Oncotarget Abbreviated Journal Oncotarget  
  Volume 7 Issue 52 Pages 86388-86405  
  Keywords Ifitm3; brain tumors; cancer stem cells; glioma; irradiation  
  Abstract Glioblastoma multiforme (GBM) is one of the most lethal solid tumors in adults. Despite aggressive treatment approaches for patients, GBM recurrence is inevitable, in part due to the existence of stem-like brain tumor-propagating cells (BTPCs), which produce factors rendering them resistant to radio- and chemotherapy. Comparative transcriptome analysis of irradiated, patient-derived BTPCs revealed a significant upregulation of the interferon-inducible transmembrane protein 3 (IFITM3), suggesting the protein as a factor mediating radio resistance. Previously, IFITM3 has been described to affect glioma cells; therefore, the role of IFITM3 in the formation and progression of brain tumors has been investigated in vivo. Intracranial implantation studies using radio-selected BTPCs alongside non-irradiated parental BTPCs in immunodeficient mice displayed no influence of irradiation on animal survival. Furthermore, gain and loss of function studies using BTPCs ectopically expressing IFITM3 or having IFITM3 down-modulated by a shRNA approach, did affect neither tumor growth nor animal survival. Additionally, a syngeneic model based on the mouse glioma cell line GL261 was applied in order to consider the possibility that IFITM3 relies on an intact immune system to unfold its tumorigenic potential. GL261 cells ectopically expressing IFITM3 were implanted into the striatum of immunocompetent mice without influencing the survival of glioma-bearing animals. Lastly, the vasculature and the extent of microglia/macrophage invasion into the tumor were studied in BTPC and GL261 tumors but neither parameter was altered by IFITM3. This report presents for the first time that IFITM3 is upregulated in patient-derived BTPCs upon irradiation but does not affect brain tumor formation or progression in vivo.  
  Address German Cancer Research Center (DKFZ), Heidelberg, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1949-2553 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27835870 Approved no  
  Call Number ref @ user @ Serial 96625  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: