|   | 
Details
   web
Records
Author Jacob, G.; Gray, B.; Rice, D.E.; Tessler, S.; Barringer, T.H.
Title Water Quality of the Delaware and Raritan Canal, New Jersey, 1998-99 Type Unsupported: Internet Communication
Year 2001 Publication Water-Resources Investigations Report 01-4072 Abbreviated Journal
Volume Issue Pages
Keywords data dictionary; database design
Abstract Since 1934, the Delaware and Raritan Canal has been used to transfer water from the Delaware River Basin to the Raritan River Basin. The water transported by the Delaware and Raritan Canal in New Jersey is used primarily for public supply after it has been treated at drinking-water treatment plants located in the Raritan River Basin. Recently (1999), the raw water taken from the canal during storms has required increased amounts of chemical treatments for removal of suspended solids, and the costs of removing the additional sludge or residuals generated during water treatment have increased. At present, action to control algae is unnecessary. The water quality of the Delaware and Raritan Canal was studied for approximately 16.5 months from mid-January 1998 through May 1999 to determine whether changes in water quality along the length of the canal are associated with storms. Nine water-quality constituents, and field measured specific conductance and turbidity were statistically tested. Instantaneous or grab samples of water were collected from the Delaware and Raritan Canal after five storms and during four nonstorm events. Median values of water-quality constituents in samples collected immediately after storms and during nonstorm conditions when statistically compared by sampling location were not significantly different. Therefore, the data were combined or aggregated to eliminate one of the two explanatory variables, either individual sampling sites or the two types of sampling events, in order to generate a sample population large enough to show statistically significant differences. After combining sampling events, only the median concentration of suspended organic carbon, and field measured specific conductance and turbidity, were significantly different among sampling sites. Median concentrations of total and filtered ammonia plus organic nitrogen, total phosphorous, turbidity, ultraviolet absorbance at 254 nanometers, and dissolved organic carbon in samples collected after storms were significantly greater than in samples collected during nonstorm conditions, when the sampling locations were aggregated in the statistical analysis. Methyl tert-butyl ether, the most frequently detected volatile organic compound (VOC), was detected in 55 of 80 samples. The highest concentration of methyl tert-butyl ether, 3.2 micrograms per liter, was measured in a sample collected during nonstorm conditions. The median of the continuously monitored specific conductance during nonstorm conditions at Port Mercer, N.J., increased by approximately 3 to 4 µS/cm (microsiemens per centimeter) (1.5 to 2 percent of the median specific conductance) relative to that at the nearest upstream site, at Lower Ferry Road. The land use in the influent basins for this reach of the Delaware and Raritan Canal is primarily urban. One possible source of water with high specific conductance is either domestic or industrial wastewater that continuously discharges into pipes, then empties into the canal. Another possible source is ground water from an area within this reach where the elevation of the water table is higher than that of the water surface of the Delaware and Raritan Canal. The median continuously monitored specific conductance measured during nonstorm conditions at the Route 18 Spillway site increased relative to that of the nearest upstream site, Ten Mile Lock, by approximately 3 to 4 µS/cm. The mean net change in continuously monitored specific conductance for this reach during storms also increased. Land use in the two largest influent basins within this reach, the Borough of South Bound Brook and Als Brook, is predominantly urban. The mean and median of continuously monitored turbidity varied along the length of the canal. In the reach between Raven Rock and Lower Ferry Road, the mean and median for continuously monitored turbidity during the study period increased by 7.2 and 6.2 NTU (nephelometric turbidity units), respectively. The mean of continuously monitored turbidity decreased downstream from Lower Ferry Road to Ten Mile Lock. Turbidity could increase locally downstream from influent streams or outfalls, but because the average velocity of water in the canal is low, particles that cause turbidity are not transported appreciable distances. In the reach between Ten Mile Lock and the Route 18 Spillway, the mean and median of the continuously monitored turbidity changed less than 0.5 NTU during the period of record. The small change in turbidity in this reach is not consistent with an average velocity for the reach; the average velocity in this reach was the lowest in all of the reaches studied. The expected decrease in turbidity due to settling of suspended solids is likely offset by turbid water entering the canal from influent streams or discharges from storm drains. Field observation of a sand bar immediately downstream from the confluence of Als Brook and the canal confirmed that the Als Brook drainage basin has contributed stormwater-generated sediment to the canal that could reach the monitor located at the Route 18 Spillway and the raw water intakes for two drinking-water treatment plants.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Jacob Gibs, Bonnie Gray, Donald E. Rice, Steven Tessler, and Thomas H. Barringer Water-Resources Investigations Report 01-4072 Approved no
Call Number refbase @ user @ Serial 547
Permanent link to this record
 

 
Author Granato, G.E.; Tessler, S.
Title Data Model and Relational Database Design for Highway Runoff Water-Quality Metadata Type Unsupported: Internet Communication
Year 2000 Publication U.S. Geological Survey Open-File Report 00-480 Abbreviated Journal
Volume Issue Pages
Keywords
Abstract A National highway and urban runoff waterquality metadatabase was developed by the U.S. Geological Survey in cooperation with the Federal Highway Administration as part of the National Highway Runoff Water-Quality Data and Methodology Synthesis (NDAMS). The database was designed to catalog available literature and to document results of the synthesis in a format that would facilitate current and future research on highway and urban runoff. This report documents the design and implementation of the NDAMS relational database, which was designed to provide a catalog of available information and the results of an assessment of the available data. All the citations and the metadata collected during the review process are presented in a stratified metadatabase that contains citations for relevant publications, abstracts (or previa), and reportreview metadata for a sample of selected reports that document results of runoff quality investigations. The database is referred to as a metadatabase because it contains information about available data sets rather than a record of the original data. The database contains the metadata needed to evaluate and characterize how valid, current, complete, comparable, and technically defensible published and available information may be when evaluated for application to the different dataquality objectives as defined by decision makers. This database is a relational database, in that all information is ultimately linked to a given citation in the catalog of available reports. The main database file contains 86 tables consisting of 29 data tables, 11 association tables, and 46 domain tables. The data tables all link to a particular citation, and each data table is focused on one aspect of the information collected in the literature search and the evaluation of available information. This database is implemented in the Microsoft (MS) Access database software because it is widely used within and outside of government and is familiar to many existing and potential customers. The stratified metadatabase design for the NDAMS program is presented in the MS Access file DBDESIGN.mdb and documented with a data dictionary in the NDAMS_DD.mdb file recorded on the CD-ROM. The data dictionary file includes complete documentation of the table names, table descriptions, and information about each of the 419 fields in the database.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 548
Permanent link to this record
 

 
Author Tessler, S.
Title Data Model and Relational Database Design for the New England Water-Use Data System (NEWUDS) Type Unsupported: Internet Communication
Year 2001 Publication USGS Open-File Report 01-359 Abbreviated Journal
Volume Issue Pages
Keywords data dictionary; data model; database; metadata; water use
Abstract The New England Water-Use Data System (NEWUDS) is a database for the storage and retrieval of water-use data. NEWUDS can handle data covering many facets of water use, including (1) tracking various types of water-use activities (withdrawals, returns, transfers, distributions, consumptive-use, wastewater collection, and treatment); (2) the description, classification and location of places and organizations involved in water-use activities; (3) details about measured or estimated volumes of water associated with water-use activities; and (4) information about data sources and water resources associated with water use. In NEWUDS, each water transaction occurs unidirectionally between two site objects, and the sites and conveyances form a water network. The core entities in the NEWUDS model are site, conveyance, transaction/rate, location, and owner. Other important entities include water resources (used for withdrawals and returns), data sources, and aliases. Multiple water-exchange estimates can be stored for individual transactions based on different methods or data sources. Storage of user-defined details is accommodated for several of the main entities. Numerous tables containing classification terms facilitate detailed descriptions of data items and can be used for routine or custom data summarization. NEWUDS handles single-user and aggregate-user water-use data, can be used for large or small water-network projects, and is available as a stand-alone Microsoft® Access database structure. Users can customize and extend the database, link it to other databases, or implement the design in other relational database applications.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Open-File Report 01-359 Approved no
Call Number refbase @ user @ Serial 549
Permanent link to this record
 

 
Author Tessler, S.
Title Data model and relational database design for the New Jersey Water-Transfer Data System (NJWaTr) Type Unsupported: Internet Communication
Year 2003 Publication USGS Open-File Report 03-197 Abbreviated Journal
Volume Issue Pages
Keywords data dictionary; data model; database; metadata; water use
Abstract The New Jersey Water-Transfer Data System (NJWaTr) is a database design for the storage and retrieval of water-use data. NJWaTr can manage data encompassing many facets of water use, including (1) the tracking of various types of water-use activities (withdrawals, returns, transfers, distributions, consumptive-use, wastewater collection, and treatment); (2) the storage of descriptions, classifications and locations of places and organizations involved in water-use activities; (3) the storage of details about measured or estimated volumes of water associated with water-use activities; and (4) the storage of information about data sources and water resources associated with water use. In NJWaTr, each water transfer occurs unidirectionally between two site objects, and the sites and conveyances form a water network. The core entities in the NJWaTr model are site, conveyance, transfer/volume, location, and owner. Other important entities include water resource (used for withdrawals and returns), data source, permit, and alias. Multiple water-exchange estimates based on different methods or data sources can be stored for individual transfers. Storage of user-defined details is accommodated for several of the main entities. Many tables contain classification terms to facilitate the detailed description of data items and can be used for routine or custom data summarization. NJWaTr accommodates single-user and aggregate-user water-use data, can be used for large or small water-network projects, and is available as a stand-alone Microsoft® Access database. Data stored in the NJWaTr structure can be retrieved in user-defined combinations to serve visualization and analytical applications. Users can customize and extend the database, link it to other databases, or implement the design in other relational database applications.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Ofr 03-197: Approved no
Call Number refbase @ user @ Serial 550
Permanent link to this record
 

 
Author Ries, K.G.I.I.I.; Horn, M.A.; Nardi, M.R.; Tessler, S.
Title Incorporation of Water-Use Summaries into the StreamStats Web Application for Maryland Type Unsupported: Internet Communication
Year 2010 Publication USGS Scientific Investigations Report 2010-5111 Abbreviated Journal
Volume Issue Pages
Keywords data integration; water use
Abstract
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 551
Permanent link to this record