toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gravina, G.L.; Mancini, A.; Colapietro, A.; Vitale, F.; Vetuschi, A.; Pompili, S.; Rossi, G.; Marampon, F.; Richardson, P.J.; Patient, L.; Patient, L.; Burbidge, S.; Festuccia, C. url  doi
openurl 
  Title The novel CXCR4 antagonist, PRX177561, reduces tumor cell proliferation and accelerates cancer stem cell differentiation in glioblastoma preclinical models Type Journal Article
  Year 2017 Publication Tumour Biology : the Journal of the International Society for Oncodevelopmental Biology and Medicine Abbreviated Journal Tumour Biol  
  Volume 39 Issue 6 Pages 1010428317695528  
  Keywords Adult; Animals; Cell Differentiation/drug effects; Cell Line, Tumor; Cell Movement/drug effects; Cell Proliferation/drug effects; Chemokine CXCL12/*genetics; Disease-Free Survival; Glioblastoma/*drug therapy/genetics; Humans; Mice; Neoplasm Recurrence, Local/*drug therapy/genetics/pathology; Neoplastic Stem Cells/drug effects/pathology; Neovascularization, Pathologic/*drug therapy/genetics/pathology; Receptors, CXCR4/antagonists & inhibitors/*genetics; Signal Transduction/drug effects; Tumor Microenvironment/drug effects; Cxcr4; Glioblastoma; angiogenesis; monocyte infiltration  
  Abstract Glioblastoma is the most frequent and the most lethal primary brain tumor among adults. Standard of care is the association of radiotherapy with concomitant or adjuvant temozolomide. However, to date, recurrence is inevitable. The CXCL12/CXCR4 pathway is upregulated in the glioblastoma tumor microenvironment regulating tumor cell proliferation, local invasion, angiogenesis, and the efficacy of radio-chemotherapy. In this study, we evaluated the effects of the novel CXCR4 antagonist, PRX177561, in preclinical models of glioblastoma. CXCR4 expression and PRX177561 effects were assessed on a panel of 12 human glioblastoma cells lines and 5 patient-derived glioblastoma stem cell cultures. Next, the effect of PRX177561 was tested in vivo, using subcutaneous injection of U87MG, U251, and T98G cells as well as orthotopic intrabrain inoculation of luciferase-transfected U87MG cells. Here we found that PRX177561 impairs the proliferation of human glioblastoma cell lines, increases apoptosis, and reduces CXCR4 expression and cell migration in response to stromal cell-derived factor 1alpha in vitro. PRX177561 reduced the expression of stem cell markers and increased that of E-cadherin and glial fibrillary acidic protein in U87MG cells consistent with a reduction in cancer stem cells. In vivo, PRX177561 reduced the weight and increased the time to progression of glioblastoma subcutaneous tumors while increasing disease-free survival and overall survival of mice bearing orthotopic tumors. Our findings suggest that targeting stromal cell-derived factor 1 alpha/CXCR4 axis by PRX177561 might represent a novel therapeutic approach against glioblastoma and support further investigation of this compound in more complex preclinical settings in order to determine its therapeutic potential.  
  Address 1 Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1010-4283 ISBN (down) Medium  
  Area Expedition Conference  
  Notes PMID:28639900 Approved no  
  Call Number ref @ user @ Serial 96581  
Permanent link to this record
 

 
Author Liu, Y.; Shen, Y.; Sun, T.; Yang, W. url  doi
openurl 
  Title Mechanisms regulating radiosensitivity of glioma stem cells Type Journal Article
  Year 2017 Publication Neoplasma Abbreviated Journal Neoplasma  
  Volume 64 Issue 5 Pages 655-665  
  Keywords glioma stem cells; radiosensitivity signaling pathways.  
  Abstract Malignant glioblastoma (GBM) has become a very common and difficult brain tumor given its low cure rate and high recurrence rate. GBMs are resistant to treatments because glioma stem cells (GSCs)/glioma-initiating cells (GICs), a specific subpopulation of GBM, possess properties of tumor stem cells, such as unlimited proficiency, self-renewal, differentiation and resistance to chemotherapy and radiotherapy, and exhibit a very strong DNA repair capability. Radiotherapy has become a preponderant treatment, and researchers have found many significant tumor microenvironmental factors and valuable signaling pathways regulating the GSC radioresistance, including NOTCH, Wnt/beta-catenin, Hedgehog, STAT3, and PI3K/AKT/mTOR. Therefore, we seek to boost GSC radiosensitivity through activating or inactivating pathways alone or together to eliminate the likely source of glioma and prolong survival of patients.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-2685 ISBN (down) Medium  
  Area Expedition Conference  
  Notes PMID:28592117 Approved no  
  Call Number ref @ user @ Serial 96582  
Permanent link to this record
 

 
Author Goncalves, D.P.N.; Rodriguez, R.D.; Kurth, T.; Bray, L.J.; Binner, M.; Jungnickel, C.; Gur, F.N.; Poser, S.W.; Schmidt, T.L.; Zahn, D.R.T.; Androutsellis-Theotokis, A.; Schlierf, M.; Werner, C. url  doi
openurl 
  Title Enhanced targeting of invasive glioblastoma cells by peptide-functionalized gold nanorods in hydrogel-based 3D cultures Type Journal Article
  Year 2017 Publication Acta Biomaterialia Abbreviated Journal Acta Biomater  
  Volume 58 Issue Pages 12-25  
  Keywords 3D culture; Cancer stem cells; Glioblastoma Multiforme; Gold nanorods; Photothermolysis  
  Abstract Cancer stem cells (CSCs) are responsible for drug resistance, tumor recurrence, and metastasis in several cancer types, making their eradication a primary objective in cancer therapy. Glioblastoma Multiforme (GBM) tumors are usually composed of a highly infiltrating CSC subpopulation, which has Nestin as a putative marker. Since the majority of these infiltrating cells are able to elude conventional therapies, we have developed gold nanorods (AuNRs) functionalized with an engineered peptide capable of specific recognition and selective eradication of Nestin positive infiltrating GBM-CSCs. These AuNRs generate heat when irradiated by a near-infrared laser, and cause localized cell damage. Nanoparticle internalization assays performed with GBM-CSCs or Nestin negative cells cultured as two-dimensional (2D) monolayers or embedded in three-dimensional (3D) biodegradable-hydrogels of tunable mechanical properties, revealed that the AuNRs were mainly internalized by GBM-CSCs, and not by Nestin negative cells. The AuNRs were taken up via energy-dependent and caveolae-mediated endocytic mechanisms, and were localized inside endosomes. Photothermal treatments resulted in the selective elimination of GBM-CSCs through cell apoptosis, while Nestin negative cells remained viable. Results also indicated that GBM-CSCs embedded in hydrogels were more resistant to AuNR photothermal treatments than when cultured as 2D monolayers. In summary, the combination of our engineered AuNRs with our tunable hydrogel system has shown the potential to provide an in vitro platform for the evaluation and screening of AuNR-based cancer therapeutics, leading to a substantial advancement in the application of AuNRs for targeted GBM-CSC therapy. STATEMENT OF SIGNIFICANCE: There is an urgent need for reliable and efficient therapies for the treatment of Glioblastoma Multiforme (GBM), which is currently an untreatable brain tumor form with a very poor patient survival rate. GBM tumors are mostly comprised of cancer stem cells (CSCs), which are responsible for tumor reoccurrence and therapy resistance. We have developed gold nanorods functionalized with an engineered peptide capable of selective recognition and eradication of GBM-CSCs via heat generation by nanorods upon NIR irradiation. An in vitro evaluation of nanorod therapeutic activities was performed in 3D synthetic-biodegradable hydrogel models with distinct biomechanical cues, and compared to 2D cultures. Results indicated that cells cultured in 3D were more resistant to photothermolysis than in 2D systems.  
  Address Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-7061 ISBN (down) Medium  
  Area Expedition Conference  
  Notes PMID:28576716 Approved no  
  Call Number ref @ user @ Serial 96583  
Permanent link to this record
 

 
Author Jahan, N.; Lee, J.M.; Shah, K.; Wakimoto, H. url  doi
openurl 
  Title Therapeutic targeting of chemoresistant and recurrent glioblastoma stem cells with a proapoptotic variant of oncolytic herpes simplex virus Type Journal Article
  Year 2017 Publication International Journal of Cancer Abbreviated Journal Int J Cancer  
  Volume 141 Issue 8 Pages 1671-1681  
  Keywords Animals; Apoptosis/physiology; Brain Neoplasms/drug therapy/*therapy/virology; Cell Line, Tumor; Cohort Studies; Dacarbazine/analogs & derivatives/pharmacology; Drug Resistance, Neoplasm; Glioblastoma/drug therapy/*therapy/virology; HEK293 Cells; Humans; Mice; Neoplasm Recurrence, Local/drug therapy/therapy/virology; Neoplastic Stem Cells/drug effects/pathology/*virology; Oncolytic Virotherapy/*methods; Simplexvirus/genetics/*physiology; TNF-Related Apoptosis-Inducing Ligand/biosynthesis/genetics; TNF-related apoptosis inducing ligand (TRAIL); glioblastoma; oncolytic herpes simplex virus; recurrence; temozolomide  
  Abstract Temozolomide (TMZ) chemotherapy, in combination with maximal safe resection and radiotherapy, is the current standard of care for patients with glioblastoma (GBM). Despite this multimodal approach, GBM inevitably relapses primarily due to resistance to chemo-radiotherapy, and effective treatment is not available for recurrent disease. In this study we identified TMZ resistant patient-derived primary and previously treated recurrent GBM stem cells (GSC), and investigated the therapeutic activity of a pro-apoptotic variant of oHSV (oHSV-TRAIL) in vitro and in vivo. We show that oHSV-TRAIL modulates cell survival and MAP Kinase proliferation signaling pathways as well as DNA damage response pathways in both primary and recurrent TMZ-resistant GSC. Utilizing real time in vivo imaging and correlative immunohistochemistry, we show that oHSV-TRAIL potently inhibits tumor growth and extends survival of mice bearing TMZ-insensitive recurrent intracerebral GSC tumors via robust and selective induction of apoptosis-mediated death in tumor cells, resulting in cures in 40% of the treated mice. In comparison, the anti-tumor effects in a primary chemoresistant GSC GBM model exhibiting a highly invasive phenotype were significant but less prominent. This work thus demonstrates the ability of oHSV-TRAIL to overcome the therapeutic resistance and recurrence of GBM, and provides a basis for its testing in a GBM clinical trial.  
  Address Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-7136 ISBN (down) Medium  
  Area Expedition Conference  
  Notes PMID:28567859 Approved no  
  Call Number ref @ user @ Serial 96584  
Permanent link to this record
 

 
Author Yan, H.; Romero-Lopez, M.; Benitez, L.I.; Di, K.; Frieboes, H.B.; Hughes, C.C.W.; Bota, D.A.; Lowengrub, J.S. url  doi
openurl 
  Title 3D Mathematical Modeling of Glioblastoma Suggests That Transdifferentiated Vascular Endothelial Cells Mediate Resistance to Current Standard-of-Care Therapy Type Journal Article
  Year 2017 Publication Cancer Research Abbreviated Journal Cancer Res  
  Volume 77 Issue 15 Pages 4171-4184  
  Keywords Brain Neoplasms/*pathology; Cell Transdifferentiation/physiology; Endothelial Cells/*pathology; Glioblastoma/*pathology; Humans; *Models, Theoretical; Neoplastic Stem Cells/*pathology  
  Abstract Glioblastoma (GBM), the most aggressive brain tumor in human patients, is decidedly heterogeneous and highly vascularized. Glioma stem/initiating cells (GSC) are found to play a crucial role by increasing cancer aggressiveness and promoting resistance to therapy. Recently, cross-talk between GSC and vascular endothelial cells has been shown to significantly promote GSC self-renewal and tumor progression. Furthermore, GSC also transdifferentiate into bona fide vascular endothelial cells (GEC), which inherit mutations present in GSC and are resistant to traditional antiangiogenic therapies. Here we use three-dimensional mathematical modeling to investigate GBM progression and response to therapy. The model predicted that GSCs drive invasive fingering and that GEC spontaneously form a network within the hypoxic core, consistent with published experimental findings. Standard-of-care treatments using DNA-targeted therapy (radiation/chemo) together with antiangiogenic therapies reduced GBM tumor size but increased invasiveness. Anti-GEC treatments blocked the GEC support of GSCs and reduced tumor size but led to increased invasiveness. Anti-GSC therapies that promote differentiation or disturb the stem cell niche effectively reduced tumor invasiveness and size, but were ultimately limited in reducing tumor size because GECs maintain GSCs. Our study suggests that a combinatorial regimen targeting the vasculature, GSCs, and GECs, using drugs already approved by the FDA, can reduce both tumor size and invasiveness and could lead to tumor eradication. Cancer Res; 77(15); 4171-84. (c)2017 AACR.  
  Address Center for Complex Biological Systems, University of California, Irvine, California  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-5472 ISBN (down) Medium  
  Area Expedition Conference  
  Notes PMID:28536277 Approved no  
  Call Number ref @ user @ Serial 96585  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: