toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fogel, O.; Richard-Miceli, C.; Tost, J. url  doi
openurl 
  Title Epigenetic Changes in Chronic Inflammatory Diseases Type Journal Article
  Year 2017 Publication Advances in Protein Chemistry and Structural Biology Abbreviated Journal Adv Protein Chem Struct Biol  
  Volume 106 Issue (up) Pages 139-189  
  Keywords Behcet's disease; Crohn's disease; DNA methylation; Ewas; Epigenetics; Histone modifications; Inflammatory bowel disease; Psoriasis; Spondyloarthritis; Ulcerative colitis  
  Abstract The number of people diagnosed with chronic inflammatory diseases has increased noteworthy in the last 40 years. Spondyloarthritis (SpA), inflammatory bowel diseases (IBD), and psoriasis are the most frequent chronic inflammatory diseases, resulting from a combination of genetic predisposition and environmental factors. Epigenetic modifications include DNA methylation, histone modifications, and small and long noncoding RNAs. They are influenced by environmental exposure, life-style, and aging and have recently been shown to be altered in many complex diseases including inflammatory diseases. While epigenetic modifications have been well characterized in other diseases such as cancer and autoimmune diseases, knowledge on changes in inflammatory diseases is lagging behind with some disease-specific differences. While the DNA methylation profile of different cell types in patients with IBD has been relatively well described, less is known on changes implicated in psoriasis, and no systematic genome-wide studies have so far been performed in SpA. In this chapter, we review in detail the reported changes in patterns of DNA methylation and posttranslational histone modifications in chronic inflammatory diseases highlighting potential connections between disease-associated pathophysiological changes such as the dysbiosis of the microbiome or genetic variations associated with disease susceptibility and the epigenome. We also discuss important parameters of meaningful epigenetic studies such as the use of well defined, disease-relevant cell populations, and elude on the potential future of engineering of the epigenome in inflammatory diseases.  
  Address Laboratory for Epigenetics and Environment, Centre National de Genotypage, CEA-Institut de Genomique, Evry, France. Electronic address: tost@cng.fr  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1876-1623 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28057210 Approved no  
  Call Number ref @ user @ Serial 96374  
Permanent link to this record
 

 
Author Heffernan, J.M.; McNamara, J.B.; Borwege, S.; Vernon, B.L.; Sanai, N.; Mehta, S.; Sirianni, R.W. url  doi
openurl 
  Title PNIPAAm-co-Jeffamine(R) (PNJ) scaffolds as in vitro models for niche enrichment of glioblastoma stem-like cells Type Journal Article
  Year 2017 Publication Biomaterials Abbreviated Journal Biomaterials  
  Volume 143 Issue (up) Pages 149-158  
  Keywords Brain tumor initiating cells; Cancer stem cells; Radioresistance; Temperature responsive polymer scaffolds; Tissue engineering  
  Abstract Glioblastoma (GBM) is the most common adult primary brain tumor, and the 5-year survival rate is less than 5%. GBM malignancy is driven in part by a population of GBM stem-like cells (GSCs) that exhibit indefinite self-renewal capacity, multipotent differentiation, expression of neural stem cell markers, and resistance to conventional treatments. GSCs are enriched in specialized niche microenvironments that regulate stem phenotypes and support GSC radioresistance. Therefore, identifying GSC-niche interactions that regulate stem phenotypes may present a unique target for disrupting the maintenance and persistence of this treatment resistant population. In this work, we engineered 3D scaffolds from temperature responsive poly(N-isopropylacrylamide-co-Jeffamine M-1000(R) acrylamide), or PNJ copolymers, as a platform for enriching stem-specific phenotypes in two molecularly distinct human patient-derived GSC cell lines. Notably, we observed that, compared to conventional neurosphere cultures, PNJ cultured GSCs maintained multipotency and exhibited enhanced self-renewal capacity. Concurrent increases in expression of proteins known to regulate self-renewal, invasion, and stem maintenance in GSCs (NESTIN, EGFR, CD44) suggest that PNJ scaffolds effectively enrich the GSC population. We further observed that PNJ cultured GSCs exhibited increased resistance to radiation treatment compared to GSCs cultured in standard neurosphere conditions. GSC radioresistance is supported in vivo by niche microenvironments, and this remains a significant barrier to effectively treating these highly tumorigenic cells. Taken in sum, these data indicate that the microenvironment created by synthetic PNJ scaffolds models niche enrichment of GSCs in patient-derived GBM cell lines, and presents tissue engineering opportunities for studying clinically important behaviors such as radioresistance in vitro.  
  Address Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W Thomas Ave, Phoenix, AZ, 85013, USA; School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, AZ, 85287, USA. Electronic address: rachael.sirianni@dignityhealth.org  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-9612 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28802102 Approved no  
  Call Number ref @ user @ Serial 96570  
Permanent link to this record
 

 
Author Klumpp, L.; Sezgin, E.C.; Skardelly, M.; Eckert, F.; Huber, S.M. url  doi
openurl 
  Title KCa3.1 channels and glioblastoma: in vitro studies Type Journal Article
  Year 2017 Publication Current Neuropharmacology Abbreviated Journal Curr Neuropharmacol  
  Volume Issue (up) Pages  
  Keywords γH2AX foci; Aldh1a3; Gbm; GSCs; IKCa; Kcnn4; Sk4; radioresistance  
  Abstract Several tumor entities including brain tumors aberrantly overexpress intermediate conductance Ca2+ activated KCa3.1 K+ channels. These channels contribute significantly to the transformed phenotype of the tumor cells. By modulating membrane potential, cell volume, Ca2+ signals and the respiration chain, KCa3.1 channels in both, plasma and inner mitochondrial membrane, have been demonstrated to regulate many cellular processes such as migration and tissue invasion, metastasis, cell cycle progression, oxygen consumption and metabolism, DNA damage response and cell death of cancer cells. Moreover, KCa3.1 channels have been shown to crucially contribute to resistance against radiotherapy suggesting KCa3.1 channels as promising new targets of future anti-cancer therapies. The present article summarizes our current knowledge of the molecular signaling upstream and downstream and the effector functions of KCa3.1 channel activity in tumor cells in general and in glioblastoma cells in particular. In addition, it presents original in vitro data on KCa3.1 channel expression in subtypes of glioblastoma stem(-like) cells proposing KCa3.1 as marker for the mesenchymal subgroup of cancer stem cells. Moreover, the data suggest that KCa3.1 contributes to the therapy resistance of mesenchymal glioblastoma stem cells.  
  Address Department of Radiation Oncology University of Tubingen Hoppe-Seyler-Str. 3 72076 Tubingen. Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1570-159X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28786347 Approved no  
  Call Number ref @ user @ Serial 96571  
Permanent link to this record
 

 
Author Guerrero, P.A.; Tchaicha, J.H.; Chen, Z.; Morales, J.E.; McCarty, N.; Wang, Q.; Sulman, E.P.; Fuller, G.; Lang, F.F.; Rao, G.; McCarty, J.H. url  doi
openurl 
  Title Glioblastoma stem cells exploit the alphavbeta8 integrin-TGFbeta1 signaling axis to drive tumor initiation and progression Type Journal Article
  Year 2017 Publication Oncogene Abbreviated Journal Oncogene  
  Volume Issue (up) Pages  
  Keywords  
  Abstract Glioblastoma (GBM) is a primary brain cancer that contains populations of stem-like cancer cells (GSCs) that home to specialized perivascular niches. GSC interactions with their niche influence self-renewal, differentiation and drug resistance, although the pathways underlying these events remain largely unknown. Here, we report that the integrin alphavbeta8 and its latent transforming growth factor beta1 (TGFbeta1) protein ligand have central roles in promoting niche co-option and GBM initiation. alphavbeta8 integrin is highly expressed in GSCs and is essential for self-renewal and lineage commitment in vitro. Fractionation of beta8high cells from freshly resected human GBM samples also reveals a requirement for this integrin in tumorigenesis in vivo. Whole-transcriptome sequencing reveals that alphavbeta8 integrin regulates tumor development, in part, by driving TGFbeta1-induced DNA replication and mitotic checkpoint progression. Collectively, these data identify the alphavbeta8 integrin-TGFbeta1 signaling axis as crucial for exploitation of the perivascular niche and identify potential therapeutic targets for inhibiting tumor growth and progression in patients with GBM.Oncogene advance online publication, 7 August 2017; doi:10.1038/onc.2017.248.  
  Address Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-9232 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28783169 Approved no  
  Call Number ref @ user @ Serial 96572  
Permanent link to this record
 

 
Author Behling, F.; Kaltenstadler, M.; Noell, S.; Schittenhelm, J.; Bender, B.; Eckert, F.; Tabatabai, G.; Tatagiba, M.; Skardelly, M. url  doi
openurl 
  Title The Prognostic Impact of Ventricular Opening in Glioblastoma Surgery: A Retrospective Single Center Analysis Type Journal Article
  Year 2017 Publication World Neurosurgery Abbreviated Journal World Neurosurg  
  Volume 106 Issue (up) Pages 615-624  
  Keywords Extent of resection; Glioblastoma; Hydrocephalus; Overall survival; Prognosis; Tumor volume; Ventricle opening  
  Abstract OBJECTIVE: Ventricular opening during glioblastoma (GBM) resection is controversial. Sufficient evidence regarding its prognostic role is missing. We investigated the impact of ventricular opening on overall survival (OS), hydrocephalus development, and postoperative morbidity in patients with GBM. METHODS: Patients who underwent primary GBM resection between 2006 and 2013 were assessed retrospectively. Established predictors for overall survival (age, Karnofsky Performance Status, extent of resection, O-6-methylguanine-DNA methyltransferase promoter methylation status, isocitrate dehydrogenase mutation status) and further clinical data (postoperative status, further treatment, preoperative tumor volume, proximity to the ventricle) were included in univariate and multivariate analyses. RESULTS: Thirteen (5.7%) of 229 patients developed a hydrocephalus. Multivariate logistic regression showed that neither ventricular opening, tumor size, proximity to the ventricle, nor extent of resection were significant risk factors for hydrocephalus. Ventricular opening did not delay postoperative therapy and was not associated with neurological morbidity. Kaplan-Meier analysis demonstrated that patients who underwent ventricular opening (n = 114) exhibited a median OS of 14.3 months (12.9-16.5), whereas patients who did not undergo ventricular opening (n = 115) exhibited a median OS of 18.6 months (16.1-20.8). However, multivariate Cox regression (n = 134) did not confirm ventricular opening as an independent negative predictor of OS (risk ratio 1.09, P = 0.77). Instead, it showed that a greater preoperative tumor volume >22.8 cm3 was a negative predictor of OS (risk ratio 1.76, P = 0.02). CONCLUSIONS: Because extent of resection is a strong independent predictor of OS and ventricular opening is safe, neurosurgeons should consider ventricular opening to achieve maximal tumor resection.  
  Address Department of Neurosurgery, University Hospital Tuebingen, Eberhard Karls University, Tuebingen, Germany; Center for CNS Tumors, Comprehensive Cancer Center Tuebingen Stuttgart, University Hospital Tuebingen, Eberhard Karls University, Tuebingen, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1878-8750 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28729143 Approved no  
  Call Number ref @ user @ Serial 96576  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: