|   | 
Details
   web
Records
Author Jin, W.-L.; Mao, X.-Y.; Qiu, G.-Z.
Title (down) Targeting Deubiquitinating Enzymes in Glioblastoma Multiforme: Expectations and Challenges Type Journal Article
Year 2017 Publication Medicinal Research Reviews Abbreviated Journal Med Res Rev
Volume 37 Issue 3 Pages 627-661
Keywords Animals; Carcinogenesis/pathology; Deubiquitinating Enzymes/antagonists & inhibitors/*metabolism; Enzyme Inhibitors/pharmacology; Glioblastoma/*enzymology/*therapy; Humans; *Molecular Targeted Therapy; Neoplastic Stem Cells/drug effects/pathology; DUB inhibitor; DUBs; glioblastoma; glioma stem cells; proteasome
Abstract Glioblastoma (GBM) is regarded as the most common primary intracranial neoplasm. Despite standard treatment with tumor resection and radiochemotherapy, the outcome remains gloomy. It is evident that a combination of oncogenic gain of function and tumor-suppressive loss of function has been attributed to glioma initiation and progression. The ubiquitin-proteasome system is a well-orchestrated system that controls the fate of most proteins by striking a dynamic balance between ubiquitination and deubiquitination of substrates, having a profound influence on the modulation of oncoproteins, tumor suppressors, and cellular signaling pathways. In recent years, deubiquitinating enzymes (DUBs) have emerged as potential anti-cancer targets due to their targeting several key proteins involved in the regulation of tumorigenesis, apoptosis, senescence, and autophagy. This review attempts to summarize recent studies of GBM-associated DUBs, their roles in various cellular processes, and discuss the relation between DUBs deregulation and gliomagenesis, especially how DUBs regulate glioma stem cells pluripotency, microenvironment, and resistance of radiation and chemotherapy through core stem-cell transcriptional factors. We also review recent achievements and progress in the development of potent and selective reversible inhibitors of DUBs, and attempted to find a potential GBM treatment by DUBs intervention.
Address Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, 250031, P. R. China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0198-6325 ISBN Medium
Area Expedition Conference
Notes PMID:27775833 Approved no
Call Number ref @ user @ Serial 96629
Permanent link to this record
 

 
Author Glaser, T.; Han, I.; Wu, L.; Zeng, X.
Title (down) Targeted Nanotechnology in Glioblastoma Multiforme Type Journal Article
Year 2017 Publication Frontiers in Pharmacology Abbreviated Journal Front Pharmacol
Volume 8 Issue Pages 166
Keywords blood-brain barrier; cancer stem cell; glioma; nanomedicine; nanotechnology; targeted therapy
Abstract Gliomas, and in particular glioblastoma multiforme, are aggressive brain tumors characterized by a poor prognosis and high rates of recurrence. Current treatment strategies are based on open surgery, chemotherapy (temozolomide) and radiotherapy. However, none of these treatments, alone or in combination, are considered effective in managing this devastating disease, resulting in a median survival time of less than 15 months. The efficiency of chemotherapy is mainly compromised by the blood-brain barrier (BBB) that selectively inhibits drugs from infiltrating into the tumor mass. Cancer stem cells (CSCs), with their unique biology and their resistance to both radio- and chemotherapy, compound tumor aggressiveness and increase the chances of treatment failure. Therefore, more effective targeted therapeutic regimens are urgently required. In this article, some well-recognized biological features and biomarkers of this specific subgroup of tumor cells are profiled and new strategies and technologies in nanomedicine that explicitly target CSCs, after circumventing the BBB, are detailed. Major achievements in the development of nanotherapies, such as organic poly(propylene glycol) and poly(ethylene glycol) or inorganic (iron and gold) nanoparticles that can be conjugated to metal ions, liposomes, dendrimers and polymeric micelles, form the main scope of this summary. Moreover, novel biological strategies focused on manipulating gene expression (small interfering RNA and clustered regularly interspaced short palindromic repeats [CRISPR]/CRISPR associated protein 9 [Cas 9] technologies) for cancer therapy are also analyzed. The aim of this review is to analyze the gap between CSC biology and the development of targeted therapies. A better understanding of CSC properties could result in the development of precise nanotherapies to fulfill unmet clinical needs.
Address Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1663-9812 ISBN Medium
Area Expedition Conference
Notes PMID:28408882 Approved no
Call Number ref @ user @ Serial 96596
Permanent link to this record
 

 
Author Lee, J.W.; Lim, D.H.; Sung, K.W.; Lee, H.J.; Yi, E.S.; Yoo, K.H.; Koo, H.H.; Suh, Y.L.; Shin, H.J.
Title (down) Tandem High-Dose Chemotherapy and Autologous Stem Cell Transplantation for High-Grade Gliomas in Children and Adolescents Type Journal Article
Year 2017 Publication Journal of Korean Medical Science Abbreviated Journal J Korean Med Sci
Volume 32 Issue 2 Pages 195-203
Keywords Adolescent; Antineoplastic Combined Chemotherapy Protocols/*therapeutic use; Brain Neoplasms/*drug therapy/mortality/therapy; Carboplatin/administration & dosage; Child; Child, Preschool; Etoposide/administration & dosage; Female; Glioma/*drug therapy/mortality/therapy; Humans; Male; Neoplasm Grading; Remission Induction; Retrospective Studies; Stem Cell Transplantation; Survival Rate; Thiotepa/administration & dosage; Transplantation, Autologous; Treatment Outcome; *Autologous Stem Cell Transplantation; *Brain Tumor; *Children; *High-dose Chemotherapy; *High-grade Glioma
Abstract With the aim to investigate the outcome of tandem high-dose chemotherapy and autologous stem cell transplantation (HDCT/auto-SCT) for high-grade gliomas (HGGs), we retrospectively reviewed the medical records of 30 patients with HGGs (16 glioblastomas, 7 anaplastic astrocytomas, and 7 other HGGs) between 2006 and 2015. Gross or near total resection was possible in 11 patients. Front-line treatment after surgery was radiotherapy (RT) in 14 patients and chemotherapy in the remaining 16 patients including 3 patients less than 3 years of age. Eight of 12 patients who remained progression free and 5 of the remaining 18 patients who experienced progression during induction treatment underwent the first HDCT/auto-SCT with carboplatin + thiotepa + etoposide (CTE) regimen and 11 of them proceeded to the second HDCT/auto-SCT with cyclophosphamide + melphalan (CyM) regimen. One patient died from hepatic veno-occlusive disease (VOD) during the second HDCT/auto-SCT; otherwise, toxicities were manageable. Four patients in complete response (CR) and 3 of 7 patients in partial response (PR) or second PR at the first HDCT/auto-SCT remained event free: however, 2 patients with progressive tumor experienced progression again. The probabilities of 3-year overall survival (OS) after the first HDCT/auto-SCT in 11 patients in CR, PR, or second PR was 58.2% +/- 16.9%. Tumor status at the first HDCT/auto-SCT was the only significant factor for outcome after HDCT/auto-SCT. There was no difference in survival between glioblastoma and other HGGs. This study suggests that the outcome of HGGs in children and adolescents after HDCT/auto-SCT is encouraging if the patient could achieve CR or PR before HDCT/auto-SCT.
Address Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. shinhj@skku.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1011-8934 ISBN Medium
Area Expedition Conference
Notes PMID:28049229 Approved no
Call Number ref @ user @ Serial 96614
Permanent link to this record
 

 
Author Mihu, M.R.; Cabral, V.; Pattabhi, R.; Tar, M.T.; Davies, K.P.; Friedman, A.J.; Martinez, L.R.; Nosanchuk, J.D.
Title (down) Sustained Nitric Oxide-Releasing Nanoparticles Interfere with Methicillin-Resistant Staphylococcus aureus Adhesion and Biofilm Formation in a Rat Central Venous Catheter Model Type Journal Article
Year 2017 Publication Antimicrobial Agents and Chemotherapy Abbreviated Journal Antimicrob Agents Chemother
Volume 61 Issue 1 Pages
Keywords Animals; Anti-Bacterial Agents/chemistry/*pharmacology; Bacterial Adhesion/drug effects; Biofilms/*drug effects/growth & development; Catheter-Related Infections/*drug therapy/microbiology; Central Venous Catheters; Chitosan/chemistry/pharmacology; Delayed-Action Preparations; Disease Models, Animal; Female; Glucose/chemistry; Humans; Methicillin-Resistant Staphylococcus aureus/*drug effects/growth & development/ultrastructure; Nanoparticles/*administration & dosage/chemistry; Nitric Oxide/chemical synthesis/*pharmacology; Oxidation-Reduction; Plankton/drug effects/growth & development; Rats; Rats, Sprague-Dawley; Sodium Nitrite/chemistry; Staphylococcal Infections/*drug therapy/microbiology; Staphylococcus aureus; antimicrobials; biofilms; nanoparticles; nitric oxide
Abstract Staphylococcus aureus is frequently isolated in the setting of infections of indwelling medical devices, which are mediated by the microbe's ability to form biofilms on a variety of surfaces. Biofilm-embedded bacteria are more resistant to antimicrobial agents than their planktonic counterparts and often cause chronic infections and sepsis, particularly in patients with prolonged hospitalizations. In this study, we demonstrate that sustained nitric oxide-releasing nanoparticles (NO-np) interfere with S. aureus adhesion and prevent biofilm formation on a rat central venous catheter (CVC) model of infection. Confocal and scanning electron microscopy showed that NO-np-treated staphylococcal biofilms displayed considerably reduced thicknesses and bacterial numbers compared to those of control biofilms in vitro and in vivo, respectively. Although both phenotypes, planktonic and biofilm-associated staphylococci, of multiple clinical strains were susceptible to NO-np, bacteria within biofilms were more resistant to killing than their planktonic counterparts. Furthermore, chitosan, a biopolymer found in the exoskeleton of crustaceans and structurally integrated into the nanoparticles, seems to add considerable antimicrobial activity to the technology. Our findings suggest promising development and translational potential of NO-np for use as a prophylactic or therapeutic against bacterial biofilms on CVCs and other medical devices.
Address Department of Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0066-4804 ISBN Medium
Area Expedition Conference
Notes PMID:27821454 Approved no
Call Number ref @ user @ Serial 99131
Permanent link to this record
 

 
Author Mihu, M.R.; Cabral, V.; Pattabhi, R.; Tar, M.T.; Davies, K.P.; Friedman, A.J.; Martinez, L.R.; Nosanchuk, J.D.
Title (down) Sustained Nitric Oxide-Releasing Nanoparticles Interfere with Methicillin-Resistant Staphylococcus aureus Adhesion and Biofilm Formation in a Rat Central Venous Catheter Model Type Journal Article
Year 2017 Publication Antimicrobial Agents and Chemotherapy Abbreviated Journal Antimicrob Agents Chemother
Volume 61 Issue 1 Pages
Keywords Animals; Anti-Bacterial Agents/chemistry/*pharmacology; Bacterial Adhesion/drug effects; Biofilms/*drug effects/growth & development; Catheter-Related Infections/*drug therapy/microbiology; Central Venous Catheters; Chitosan/chemistry/pharmacology; Delayed-Action Preparations; Disease Models, Animal; Female; Glucose/chemistry; Humans; Methicillin-Resistant Staphylococcus aureus/*drug effects/growth & development/ultrastructure; Nanoparticles/*administration & dosage/chemistry; Nitric Oxide/chemical synthesis/*pharmacology; Oxidation-Reduction; Plankton/drug effects/growth & development; Rats; Rats, Sprague-Dawley; Sodium Nitrite/chemistry; Staphylococcal Infections/*drug therapy/microbiology; Staphylococcus aureus; antimicrobials; biofilms; nanoparticles; nitric oxide
Abstract Staphylococcus aureus is frequently isolated in the setting of infections of indwelling medical devices, which are mediated by the microbe's ability to form biofilms on a variety of surfaces. Biofilm-embedded bacteria are more resistant to antimicrobial agents than their planktonic counterparts and often cause chronic infections and sepsis, particularly in patients with prolonged hospitalizations. In this study, we demonstrate that sustained nitric oxide-releasing nanoparticles (NO-np) interfere with S. aureus adhesion and prevent biofilm formation on a rat central venous catheter (CVC) model of infection. Confocal and scanning electron microscopy showed that NO-np-treated staphylococcal biofilms displayed considerably reduced thicknesses and bacterial numbers compared to those of control biofilms in vitro and in vivo, respectively. Although both phenotypes, planktonic and biofilm-associated staphylococci, of multiple clinical strains were susceptible to NO-np, bacteria within biofilms were more resistant to killing than their planktonic counterparts. Furthermore, chitosan, a biopolymer found in the exoskeleton of crustaceans and structurally integrated into the nanoparticles, seems to add considerable antimicrobial activity to the technology. Our findings suggest promising development and translational potential of NO-np for use as a prophylactic or therapeutic against bacterial biofilms on CVCs and other medical devices.
Address Department of Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0066-4804 ISBN Medium
Area Expedition Conference
Notes PMID:27821454 Approved no
Call Number ref @ user @ Serial 100161
Permanent link to this record