toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Brodie, S.; Lee, H.K.; Jiang, W.; Cazacu, S.; Xiang, C.; Poisson, L.M.; Datta, I.; Kalkanis, S.; Ginsberg, D.; Brodie, C. url  doi
openurl 
  Title The novel long non-coding RNA TALNEC2, regulates tumor cell growth and the stemness and radiation response of glioma stem cells Type Journal Article
  Year 2017 Publication Oncotarget Abbreviated Journal Oncotarget  
  Volume (down) 8 Issue 19 Pages 31785-31801  
  Keywords Talnec2; glioblastoma; glioma stem cells; long non-cording RNAs; mesenchymal transformation  
  Abstract Despite advances in novel therapeutic approaches for the treatment of glioblastoma (GBM), the median survival of 12-14 months has not changed significantly. Therefore, there is an imperative need to identify molecular mechanisms that play a role in patient survival. Here, we analyzed the expression and functions of a novel lncRNA, TALNEC2 that was identified using RNA seq of E2F1-regulated lncRNAs. TALNEC2 was localized to the cytosol and its expression was E2F1-regulated and cell-cycle dependent. TALNEC2 was highly expressed in GBM with poor prognosis, in GBM specimens derived from short-term survivors and in glioma cells and glioma stem cells (GSCs). Silencing of TALNEC2 inhibited cell proliferation and arrested the cells in the G1\S phase of the cell cycle in various cancer cell lines. In addition, silencing of TALNEC2 decreased the self-renewal and mesenchymal transformation of GSCs, increased sensitivity of these cells to radiation and prolonged survival of mice bearing GSC-derived xenografts. Using miRNA array analysis, we identified specific miRNAs that were altered in the silenced cells that were associated with cell-cycle progression, proliferation and mesenchymal transformation. Two of the downregulated miRNAs, miR-21 and miR-191, mediated some of TALNEC2 effects on the stemness and mesenchymal transformation of GSCs. In conclusion, we identified a novel E2F1-regulated lncRNA that is highly expressed in GBM and in tumors from patients of short-term survival. The expression of TALNEC2 is associated with the increased tumorigenic potential of GSCs and their resistance to radiation. We conclude that TALNEC2 is an attractive therapeutic target for the treatment of GBM.  
  Address Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Detroit, MI, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1949-2553 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28423669 Approved no  
  Call Number ref @ user @ Serial 96594  
Permanent link to this record
 

 
Author Sullivan, K.E.; Rojas, K.; Cerione, R.A.; Nakano, I.; Wilson, K.F. url  doi
openurl 
  Title The stem cell/cancer stem cell marker ALDH1A3 regulates the expression of the survival factor tissue transglutaminase, in mesenchymal glioma stem cells Type Journal Article
  Year 2017 Publication Oncotarget Abbreviated Journal Oncotarget  
  Volume (down) 8 Issue 14 Pages 22325-22343  
  Keywords Aldehyde Oxidoreductases/genetics/*metabolism; Biomarkers, Tumor/metabolism; Brain Neoplasms/genetics/*metabolism; Cell Line, Tumor; Cell Proliferation; Cell Survival; Dacarbazine/analogs & derivatives/pharmacology; GTP-Binding Proteins/genetics/*metabolism; Gene Expression Regulation, Neoplastic; Glioma/genetics/*metabolism; Humans; Mesenchymal Stromal Cells/*physiology; Neoplastic Stem Cells/*physiology; RNA, Small Interfering/genetics; Stem Cells/*physiology; Transglutaminases/genetics/*metabolism; Tretinoin/metabolism; Up-Regulation; aldehyde dehydrogenase; cancer stem cells; glioblastoma; retinoic acid; tissue transglutaminase  
  Abstract Tissue transglutaminase (tTG), a dual-function enzyme with GTP-binding and acyltransferase activities, has been implicated in the survival and chemotherapy resistance of aggressive cancer cells and cancer stem cells, including glioma stem cells (GSCs). Using a model system comprising two distinct subtypes of GSCs referred to as proneural (PN) and mesenchymal (MES), we find that the phenotypically aggressive and radiation therapy-resistant MES GSCs exclusively express tTG relative to PN GSCs. As such, the self-renewal, proliferation, and survival of these cells was sensitive to treatment with tTG inhibitors, with a benefit being observed when combined with the standard of care for high grade gliomas (i.e. radiation or temozolomide). Efforts to understand the molecular drivers of tTG expression in MES GSCs revealed an unexpected link between tTG and a common marker for stem cells and cancer stem cells, Aldehyde dehydrogenase 1A3 (ALDH1A3). ALDH1A3, as well as other members of the ALDH1 subfamily, can function in cells as a retinaldehyde dehydrogenase to generate retinoic acid (RA) from retinal. We show that the enzymatic activity of ALDH1A3 and its product, RA, are necessary for the observed expression of tTG in MES GSCs. Additionally, the ectopic expression of ALDH1A3 in PN GSCs is sufficient to induce the expression of tTG in these cells, further demonstrating a causal link between ALDH1A3 and tTG. Together, these findings ascribe a novel function for ALDH1A3 in an aggressive GSC phenotype via the up-regulation of tTG, and suggest the potential for a similar role by ALDH1 family members across cancer types.  
  Address Department of Molecular Medicine, Cornell University, Ithaca, NY, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1949-2553 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28423611 Approved no  
  Call Number ref @ user @ Serial 96595  
Permanent link to this record
 

 
Author Glaser, T.; Han, I.; Wu, L.; Zeng, X. url  doi
openurl 
  Title Targeted Nanotechnology in Glioblastoma Multiforme Type Journal Article
  Year 2017 Publication Frontiers in Pharmacology Abbreviated Journal Front Pharmacol  
  Volume (down) 8 Issue Pages 166  
  Keywords blood-brain barrier; cancer stem cell; glioma; nanomedicine; nanotechnology; targeted therapy  
  Abstract Gliomas, and in particular glioblastoma multiforme, are aggressive brain tumors characterized by a poor prognosis and high rates of recurrence. Current treatment strategies are based on open surgery, chemotherapy (temozolomide) and radiotherapy. However, none of these treatments, alone or in combination, are considered effective in managing this devastating disease, resulting in a median survival time of less than 15 months. The efficiency of chemotherapy is mainly compromised by the blood-brain barrier (BBB) that selectively inhibits drugs from infiltrating into the tumor mass. Cancer stem cells (CSCs), with their unique biology and their resistance to both radio- and chemotherapy, compound tumor aggressiveness and increase the chances of treatment failure. Therefore, more effective targeted therapeutic regimens are urgently required. In this article, some well-recognized biological features and biomarkers of this specific subgroup of tumor cells are profiled and new strategies and technologies in nanomedicine that explicitly target CSCs, after circumventing the BBB, are detailed. Major achievements in the development of nanotherapies, such as organic poly(propylene glycol) and poly(ethylene glycol) or inorganic (iron and gold) nanoparticles that can be conjugated to metal ions, liposomes, dendrimers and polymeric micelles, form the main scope of this summary. Moreover, novel biological strategies focused on manipulating gene expression (small interfering RNA and clustered regularly interspaced short palindromic repeats [CRISPR]/CRISPR associated protein 9 [Cas 9] technologies) for cancer therapy are also analyzed. The aim of this review is to analyze the gap between CSC biology and the development of targeted therapies. A better understanding of CSC properties could result in the development of precise nanotherapies to fulfill unmet clinical needs.  
  Address Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1663-9812 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28408882 Approved no  
  Call Number ref @ user @ Serial 96596  
Permanent link to this record
 

 
Author Voss, D.M.; Spina, R.; Carter, D.L.; Lim, K.S.; Jeffery, C.J.; Bar, E.E. url  doi
openurl 
  Title Disruption of the monocarboxylate transporter-4-basigin interaction inhibits the hypoxic response, proliferation, and tumor progression Type Journal Article
  Year 2017 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume (down) 7 Issue 1 Pages 4292  
  Keywords  
  Abstract We have previously shown that glioblastoma stem cells (GSCs) are enriched in the hypoxic tumor microenvironment, and that monocarboxylate transporter-4 (MCT4) is critical for mediating GSC signaling in hypoxia. Basigin is involved in many physiological functions during early stages of development and in cancer and is required for functional plasma membrane expression of MCT4. We sought to determine if disruption of the MCT-Basigin interaction may be achieved with a small molecule. Using a cell-based drug-screening assay, we identified Acriflavine (ACF), a small molecule that inhibits the binding between Basigin and MCT4. Surface plasmon resonance and cellular thermal-shift-assays confirmed ACF binding to basigin in vitro and in live glioblastoma cells, respectively. ACF significantly inhibited growth and self-renewal potential of several glioblastoma neurosphere lines in vitro, and this activity was further augmented by hypoxia. Finally, treatment of mice bearing GSC-derived xenografts resulted in significant inhibition of tumor progression in early and late-stage disease. ACF treatment inhibited intratumoral expression of VEGF and tumor vascularization. Our work serves as a proof-of-concept as it shows, for the first time, that disruption of MCT binding to their chaperon, Basigin, may be an effective approach to target GSC and to inhibit angiogenesis and tumor progression.  
  Address Department of Neurological Surgery, Case Western Reserve University School of Medicine and The Case Comprehensive Cancer Center, Cleveland, OH, USA. eli.bar@case.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28655889 Approved no  
  Call Number ref @ user @ Serial 96580  
Permanent link to this record
 

 
Author Momeny, M.; Moghaddaskho, F.; Gortany, N.K.; Yousefi, H.; Sabourinejad, Z.; Zarrinrad, G.; Mirshahvaladi, S.; Eyvani, H.; Barghi, F.; Ahmadinia, L.; Ghazi-Khansari, M.; Dehpour, A.R.; Amanpour, S.; Tavangar, S.M.; Dardaei, L.; Emami, A.H.; Alimoghaddam, K.; Ghavamzadeh, A.; Ghaffari, S.H. url  doi
openurl 
  Title Blockade of vascular endothelial growth factor receptors by tivozanib has potential anti-tumour effects on human glioblastoma cells Type Journal Article
  Year 2017 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume (down) 7 Issue Pages 44075  
  Keywords  
  Abstract Glioblastoma (GBM) remains one of the most fatal human malignancies due to its high angiogenic and infiltrative capacities. Even with optimal therapy including surgery, radiotherapy and temozolomide, it is essentially incurable. GBM is among the most neovascularised neoplasms and its malignant progression associates with striking neovascularisation, evidenced by vasoproliferation and endothelial cell hyperplasia. Targeting the pro-angiogenic pathways is therefore a promising anti-glioma strategy. Here we show that tivozanib, a pan-inhibitor of vascular endothelial growth factor (VEGF) receptors, inhibited proliferation of GBM cells through a G2/M cell cycle arrest via inhibition of polo-like kinase 1 (PLK1) signalling pathway and down-modulation of Aurora kinases A and B, cyclin B1 and CDC25C. Moreover, tivozanib decreased adhesive potential of these cells through reduction of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Tivozanib diminished GBM cell invasion through impairing the proteolytic cascade of cathepsin B/urokinase-type plasminogen activator (uPA)/matrix metalloproteinase-2 (MMP-2). Combination of tivozanib with EGFR small molecule inhibitor gefitinib synergistically increased sensitivity to gefitinib. Altogether, these findings suggest that VEGFR blockade by tivozanib has potential anti-glioma effects in vitro. Further in vivo studies are warranted to explore the anti-tumour activity of tivozanib in combinatorial approaches in GBM.  
  Address Haematology/Oncology and Stem Cell Transplantation Research Centre, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28287096 Approved no  
  Call Number ref @ user @ Serial 96601  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: