Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–20] |
![]() |
Reilly, T. J., Romanok, K. M., Tessler, S., & Fischer, J. M. (2010). Assessment of Physical, Chemical, and Hydrologic Factors Affecting the Infiltration of Treated Wastewater in the New Jersey Coastal Plain, with Emphasis on the Hammonton Land Application Facility.
Abstract: A hydrogeologic and water-quality investigation of the Hammonton Land Application Facility (Hammonton LAF) in Hammonton, New Jersey, was conducted to determine the factors that impede the infiltration of treated wastewater and to assess the potential for similar conditions to exist elsewhere in the Coastal Plain of New Jersey (particularly within the Pinelands National Reserve). Gamma logs, sediment cores, and hydraulic-profile testing indicate that extensive fine-grained strata and iron-cemented sands underlying the Hammonton LAF may impede infiltration and lead to the perching of diluted treated wastewater. Perched water was observed in augured holes adjacent to infiltration trenches, and analysis of wastewater loading and infiltration data indicates that infiltration trenches may receive lateral flow from multiple perched-water sources. Analysis of water-quality properties characteristic of treated wastewater show that although infiltrated wastewater is reaching the underlying aquifer, lengthy holding times and a long recharge pathway greatly reduce the concentrations of nitrate, boron, and many organic compounds typical of wastewater. Conditions at two currently operating facilities and one potential future facility in the New Jersey Coastal Plain were compared to those at the Hammonton Land Application Facility (LAF). Facilities operating as designed are not underlain by the restrictive strata that exist at the Hammonton LAF. Careful characterization of the geology and hydrology of the unsaturated zone underlying infiltration structures of future facilities in the New Jersey Coastal Plain and similar hydrogeologic settings will help to avoid constructing infiltration structures over or within low-hydraulic-conductivity strata that will decrease infiltration rates.
|
Tessler, S., Coles, J. F., & Beaulieu, K. M. (1999). Inventory of Selected Freshwater-Ecology Studies from the New England Coastal Basins (Maine, New Hampshire, Massachusetts, Rhode Island), 1937-97.
Abstract: An inventory of published studies that address freshwater ecology within the New England Coastal Basins was created through computerized bibliographic literature searches and consultation with environmental agencies. Assembled papers were classified to associate their contents with one or more states, ecoregions, river basins, and ecological topics. Full references and their classifications were entered into a bibliographic software program and then exported to a data-base application to generate a checklist summary of study contents. This report presents a listing and classification of 154 selected studies, published between 1937 and 1997, that provide background knowledge and serve as general aquatic-ecology references for the New England Coastal Basins study area
Keywords: metadata
|
Abstract. |
Jacob, G., Gray, B., Rice, D. E., Tessler, S., & Barringer, T. H. (2001). Water Quality of the Delaware and Raritan Canal, New Jersey, 1998-99.
Abstract: Since 1934, the Delaware and Raritan Canal has been used to transfer water from the Delaware River Basin to the Raritan River Basin. The water transported by the Delaware and Raritan Canal in New Jersey is used primarily for public supply after it has been treated at drinking-water treatment plants located in the Raritan River Basin. Recently (1999), the raw water taken from the canal during storms has required increased amounts of chemical treatments for removal of suspended solids, and the costs of removing the additional sludge or residuals generated during water treatment have increased. At present, action to control algae is unnecessary. The water quality of the Delaware and Raritan Canal was studied for approximately 16.5 months from mid-January 1998 through May 1999 to determine whether changes in water quality along the length of the canal are associated with storms. Nine water-quality constituents, and field measured specific conductance and turbidity were statistically tested. Instantaneous or grab samples of water were collected from the Delaware and Raritan Canal after five storms and during four nonstorm events. Median values of water-quality constituents in samples collected immediately after storms and during nonstorm conditions when statistically compared by sampling location were not significantly different. Therefore, the data were combined or aggregated to eliminate one of the two explanatory variables, either individual sampling sites or the two types of sampling events, in order to generate a sample population large enough to show statistically significant differences. After combining sampling events, only the median concentration of suspended organic carbon, and field measured specific conductance and turbidity, were significantly different among sampling sites. Median concentrations of total and filtered ammonia plus organic nitrogen, total phosphorous, turbidity, ultraviolet absorbance at 254 nanometers, and dissolved organic carbon in samples collected after storms were significantly greater than in samples collected during nonstorm conditions, when the sampling locations were aggregated in the statistical analysis. Methyl tert-butyl ether, the most frequently detected volatile organic compound (VOC), was detected in 55 of 80 samples. The highest concentration of methyl tert-butyl ether, 3.2 micrograms per liter, was measured in a sample collected during nonstorm conditions. The median of the continuously monitored specific conductance during nonstorm conditions at Port Mercer, N.J., increased by approximately 3 to 4 µS/cm (microsiemens per centimeter) (1.5 to 2 percent of the median specific conductance) relative to that at the nearest upstream site, at Lower Ferry Road. The land use in the influent basins for this reach of the Delaware and Raritan Canal is primarily urban. One possible source of water with high specific conductance is either domestic or industrial wastewater that continuously discharges into pipes, then empties into the canal. Another possible source is ground water from an area within this reach where the elevation of the water table is higher than that of the water surface of the Delaware and Raritan Canal. The median continuously monitored specific conductance measured during nonstorm conditions at the Route 18 Spillway site increased relative to that of the nearest upstream site, Ten Mile Lock, by approximately 3 to 4 µS/cm. The mean net change in continuously monitored specific conductance for this reach during storms also increased. Land use in the two largest influent basins within this reach, the Borough of South Bound Brook and Als Brook, is predominantly urban. The mean and median of continuously monitored turbidity varied along the length of the canal. In the reach between Raven Rock and Lower Ferry Road, the mean and median for continuously monitored turbidity during the study period increased by 7.2 and 6.2 NTU (nephelometric turbidity units), respectively. The mean of continuously monitored turbidity decreased downstream from Lower Ferry Road to Ten Mile Lock. Turbidity could increase locally downstream from influent streams or outfalls, but because the average velocity of water in the canal is low, particles that cause turbidity are not transported appreciable distances. In the reach between Ten Mile Lock and the Route 18 Spillway, the mean and median of the continuously monitored turbidity changed less than 0.5 NTU during the period of record. The small change in turbidity in this reach is not consistent with an average velocity for the reach; the average velocity in this reach was the lowest in all of the reaches studied. The expected decrease in turbidity due to settling of suspended solids is likely offset by turbid water entering the canal from influent streams or discharges from storm drains. Field observation of a sand bar immediately downstream from the confluence of Als Brook and the canal confirmed that the Als Brook drainage basin has contributed stormwater-generated sediment to the canal that could reach the monitor located at the Route 18 Spillway and the raw water intakes for two drinking-water treatment plants.
Keywords: data dictionary; database design
|
Granato, G. E., & Tessler, S. (2000). Data Model and Relational Database Design for Highway Runoff Water-Quality Metadata.
Abstract: A National highway and urban runoff waterquality metadatabase was developed by the U.S. Geological Survey in cooperation with the Federal Highway Administration as part of the National Highway Runoff Water-Quality Data and Methodology Synthesis (NDAMS). The database was designed to catalog available literature and to document results of the synthesis in a format that would facilitate current and future research on highway and urban runoff. This report documents the design and implementation of the NDAMS relational database, which was designed to provide a catalog of available information and the results of an assessment of the available data. All the citations and the metadata collected during the review process are presented in a stratified metadatabase that contains citations for relevant publications, abstracts (or previa), and reportreview metadata for a sample of selected reports that document results of runoff quality investigations. The database is referred to as a metadatabase because it contains information about available data sets rather than a record of the original data. The database contains the metadata needed to evaluate and characterize how valid, current, complete, comparable, and technically defensible published and available information may be when evaluated for application to the different dataquality objectives as defined by decision makers. This database is a relational database, in that all information is ultimately linked to a given citation in the catalog of available reports. The main database file contains 86 tables consisting of 29 data tables, 11 association tables, and 46 domain tables. The data tables all link to a particular citation, and each data table is focused on one aspect of the information collected in the literature search and the evaluation of available information. This database is implemented in the Microsoft (MS) Access database software because it is widely used within and outside of government and is familiar to many existing and potential customers. The stratified metadatabase design for the NDAMS program is presented in the MS Access file DBDESIGN.mdb and documented with a data dictionary in the NDAMS_DD.mdb file recorded on the CD-ROM. The data dictionary file includes complete documentation of the table names, table descriptions, and information about each of the 419 fields in the database.
|